Decomposition occurred at 187° with evolution of dense white fumes, and droplets of a dark brown oil collected in the flask and condenser. The oil was extracted with acetone (three 100-ml portions) and steam distilled to give a yellow oil in 15%yield, bp 235-236°. Anal. (C6H3ClFNO2) Č, H, Cl, N; F: caled, 10.8; found, 10.1.

2-Chloro-3-fluoroaniline.--2-Chloro-3-fluoronitrobenzene (19.6 g) was heated under reflux (15 min) with SnCl₂ (118 g) and HCl (11 N, 180 ml). The solution was then basified with NaOH (2 N) and extracted with CHCl₃ (four 100-ml portions) to yield $12.5~{\rm g}~(77\%)$ of a clear colorless oil, bp 212–215°

2-Chloro-3-fluoroacetanilide.--2-Chloro-3-fluoroaniline was acetylated with Ac₂O-NaOAc to give colorless needles, mp 131-132° (from EtOH). Anal. (C₈H₇ClFNO) C, H, F, N; COCH₃: caled, 22.9; found, 22.4.

2,6-Dinitrofluorobenzene.-Another attempted method of preparation of 2.3-diffuoroaniline involved the initial preparation of 2,6-dinitrofluorobenzene, which was accomplished by 1wo routes different from those previously reported.5-

(a) Fhorobenzene (251 g) was heated (2 hr) on a water bath with constant stirring with a mixture of H_2SO_4 (36 N, 1.5 l.) and furning H_2SO_4 (20%, 300 ml). The reaction mixture was cooled to 0° and solid KNO₃ (750 g) was added slowly, the temperature being maintained between 40 and 60°. The solution was then heated at 110° (20 hr) and poured onto ice and the white precipitate was filtered off under vacuum; after being pressed dry, the precipitate was heated under reflux (7.5 hr) with H_2SO_4 (18 N, 1.9 l.) and the reaction mixture was poured onto ice and extracted (Et₂O, four 200-ml portions). Evaporation of the dried (Na₂SO₄) ether extract yielded 104 g (22%) of a yellow, steam-volatile oil, bp 288-290° dec. Anal. (C₆H₃-FN₂O₄) C, H, F, N.

(b) 3,5-Dinitro-4-chlorobenzenesnlfonic acid (60 g), prepared by the method of Schultz,⁸ was heated with anhydrons KF (31 g), DMF (100 ml), and $C_{\rm e}H_{\rm 6}$ (100 ml) until the temperature of the distillate was 120° in order to dehydrate the system. The mixture was then heated under reflux (10 hr), brown finnes being evolved throughout. The DMF was then removed under reduced pressure and the residue was heated under reflux (8 hr) with H₂SO₄ (7 N, 1.25 l.). Extraction with CHCl₃ (four 100-ml portions) gave a yellow, steam-volatile oil, bp 288-290° dec, in 22% yield.

2-Fluoro-3-nitroaniline.-2,6-Dinitrofluorobenzene (28.5 was heated under reflux (30 min) with $SnCl_2$ (90 g), HCl (3 N, 540 ml), and EtOH (130 ml).9 The reaction mixture was basified with 2 N NaOH and extracted (Et₂O, seven 200-ml portions) to give (11.2 g, 43%) yield when crystallized from petrolemm ether (bp 40-60°) as orange needles, mp 99-100°. Anal. (C_6H_{a-} FN₂O₂) C, H, N; F: caled, 12.2; found 12.7.

Acknowledgments. --- This work was mainly supported by grants from the Anti-Cancer Council of Victoria, of which P. E. Hughes was the W. J. Kilpatrick Fellow. Jill M. Blunck is in receipt of a Research Scholarship from the University of Melbourne.

(5) R. E. Parker and T. O. Read, J. Chem. Soc., 3149 (1962).

(6) J. F. K. Wilshire, *Aust. J. Chem.*, **20**, 2809 (1967).
(7) N. N. Vorozhtsov, Jr., V. A. Sokolenko, and G. G. Yakobson, *Izv.*

Sibirsk, Otd Akad. Nauk. SSSR, 87 (1962); Chem. Abstr., 59, 1507 (1963).
(8) H. P. Schultz in "Organic Syntheses," Coll. Vol. IV, N. Rabjolm, Ed., John Wiley and Sons, Inc., New York, N. Y., 1963, p.364.

(9) J. J. Blanksma, W. J. van den Broek, and D. Hoegen, Rec. Trav. Chim., 65, 329 (1946).

Synthesis of Some Antithyroid Compounds. I

P. K. SRIVASTAVA AND M. SALEEM

Department of Chemistry, University of Roorkee, Roorkee, India

Received July 29, 1968

Various 1-arylformamidino-1-arylthiocarbamide hydrochlorides have been synthesized for biological testing since these compounds might prove to be antithyroid drugs due to their facile oxidation into the corresponding heterocyclic bases.

Experimental Section

Following the general technique for the reaction as worked out by earlier workers,¹⁻⁴ it has been found possible to prepare many substituted 1-arylformamidino-1-arylthiocarbamide hydrochlorides (I) by the interaction of aryleyanamides with the appropriate thiocarbamides.

1-Phenylformamidino-1-phenylthiocarbamide Hydrochloride. --Equimolecular quantities of phenyleyanamide (6 \mathbf{g}) in dry Et₂O and 1-phenvlthiocarbamide (8 g) dissolved in acetone were mixed and dry HCl was passed through the mixture for a few minutes. A colorless crystalline product separated which was filtered and washed freely (warm Me₂CO, Et₂O) (mp +58°). It could not be crystallized as it decomposed on boiling with any common solvent.

Similarly other substituted formamidinothiocarbamide hydrochlorides have been prepared and the results are summarized in Table I.

۰.	. 1.4	1	· 121	
 -	. 13		(<u>1</u>)	- A

1-Arylformamidino-1-arylthiocarbamide Hydrochloride (1) Ąr

Ar'NHCN-CNH2+HCl NH S

No.	Δr^{*}	Ar	Formula?	56	$M_{\mathbf{P}_{\mathbf{C}}} \cong \mathbf{C}$
i	$C_6 \Pi_5$	$C_{4}H_{5}$	$C_{14}H_{14}N_4S \cdot HCl$	92	157 - 158
2	C_6H_5	p-CH ₃ C ₅ H ₄	$C_{15}H_{16}N_4S \cdot HCI$	90	153 - 155
3	$C_{\delta}H_{\delta}$	m-CH3C6H4	$C_{15}H_{16}N_4S \cdot HCl$	88	135-137
-1	C_6H_5	o-CH ₈ C ₆ H ₄	$C_{15}H_{16}N_4S \cdot HCl$	90	1.42
5	C_8H_5	p-OC ₂ H ₅ C ₆ H ₄	$C_{16}H_{18}N_4OS \cdot HCl$	85	133 - 135
G	C_6H_5	p-ClC ₆ H ₄	$C_{14}H_{13}ClN_4S \cdot HCl$	85	150 - 151
7	C_6H_3	p-BrC ₆ H ₄	$C_{14}H_{13}BrN_4S \cdot HCI$	80	148 - 150
8	p-CiC ₆ H ₄	p-CH ₃ C ₆ ll ₄	$C_{15}H_{15}CIN_4S \cdot HCI$	78	152
-Ð	$p-\mathrm{ClC_6H_4}$	m-CH ₃ C ₆ H ₄	$C_{15}H_{15}ClN_4S \cdot HCl$	75	125
10	$p-C1C_611_4$	p-OC ₂ H ₅ C ₆ H ₄	C16H17CIN4OS HCl	70	148 - 150
1 i	p-Cl-C ₆ H ₁	C_6H_5	$C_{14}H_{13}ClN_4S \cdot HCl$	85	125 - 126
12	p-Cl-C ₆ H ₄	$p-\mathrm{ClC_6H_4}$	$C_{14}H_{12}Cl_2N_4S \cdot HCl$	80	124 - 125
13	p-Cl-C ₆ H ₄	m-ClC ₆ H ₄	$C_{44}H_{12}Cl_2N_4S \cdot HCl$	78	115
14	p -Cl-C $_{B}H_{4}$	p-BrC ₆ H ₄	$C_{14}H_{12}BrClN_4S \cdot HCl$	75	118 - 121
15	p -OC $_{2}H_{5}C_{6}H_{4}$	o-CH3C6H4	$C_{17}H_{20}N_4OS \cdot HCl$	70	117-119
16	p-OC ₂ H ₅ C ₆ H ₄	p-CH ₃ C ₆ H ₄	$C_{17}H_{20}N_4OS \cdot HCI$	70	145
17^{-1}	m-CH ₃ C ₆ H ₄	p-ClC ₆ H ₄	$C_{15}H_{15}CIN_4S \cdot HCl$	75	143-144
18	m-CH ₃ C ₆ H ₄	p-BrC ₆ H ₄	$C_{15}H_{15}BrN_4S \cdot HCl$	70	127 - 128
19	m-CH ₃ C ₆ H ₄	m-ClC ₆ H ₄	$C_{15}H_{15}CIN_4S \cdot HCI$	75	127
20	m-CH ₃ C ₆ H ₄	m-CH ₈ C ₆ H ₄	$C_{16}H_{18}N_4S \cdot HCl$	90	126 - 127
21	m-CH3C6H4	$C_{4}H_{5}$	$C_{15}H_{16}N_4S \cdot HCI$	85	141
22	m-CH ₃ C ₆ H ₄	p-OC ₂ H _o C ₆ H ₄	$C_{17}H_{20}N_4OS \cdot HCl$	70	143
23	m-CH4C6H4	p-Clf ₃ C ₆ H ₄	$C_{15}H_{18}N_4S \cdot HCl$	88	145-4146
24	$o-CH_8C_6H_4$	p-OC-ILC ₆ II4	$C_{17}H_2$, N.OS · IICi	65	136

" The analytical values for N, S, and equivalent weight for all the compounds were found in agreement with the value calculated for I. All compounds were water soluble and could not be crystallized without decomposition.

Acknowledgment.---Authors are grateful to Professor Wahid U. Malik for providing necessary laboratory facilities.

(1) C. P. Joshua, V. K. Verma, and K. S. Suresh, Tetrahedron Letters, 663 (1961).

(2) C. P. Joshua, J. Sci. Ind. Res. (India), 21B, 588 (1962).

(3) S. N. Pandeva, Indian J. Chem., 1, 525 (1963).

(4) P. K. Srivastava, *ibid.*, 1, 432 (1963).

N-(β-Guanidinoethyl)- and N-Guanylazetidines

EINIO BELLASIO AND GIANFRANCO CRISTIANI

Research Laboratories of Lepctit S.p.A., Milan, Italy

Received August 30, 1968

This communication deals with the synthesis of a series of 3,3-disubstituted N-(β -guanidinoethyl)azetidines¹ and 3,3-disubstituted N-guanylazetidines (Table I).

(1) E. Testa, L. Fontanella, and G. F. Cristiani, Aus. Chem., 626, 114 (1959).

VIAL